
Ada 2005 Standard Container Library

Matthew J Heaney
On2 Technologies, Inc

email: matthewjheaney@earthlink.net
24/6/2005

Reliable Software Technologies, Ada Europe 2005. York, UK. 20-24 June 2005
http://www.ada-europe.org/conference2005.html

Useful Links

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-20302.TXT/
http://charles.tigris.org/source/browse/charles/src/ai302/

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-20302.TXT/
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-20302.TXT/
http://charles.tigris.org/source/browse/charles/src/ai302/
http://charles.tigris.org/source/browse/charles/src/ai302/

3

Container Taxonomy

• Sequence containers (vectors, lists) store
elements at specified positions.

• Associative containers (sets, maps) store
elements in key order.

• There are alternate forms of all containers, for
storing indefinite elements and keys.

• The associative containers have both hashed
and ordered forms.

4

Time Complexity

• The standard specifies the time complexity of
operations. It is not an implementation detail.
Indeed, this is practically the reason why the
library comprises a suite of containers.

• Different containers have different time
semantics. You choose whichever container
has the particular properties best suited to the
needs of your particular application.

5

Static Polymorphism

• There is a distinction between instantiating a generic
component, and using the instantiated component.

• The generic formal region of components can differ,
but as far as using them goes, once instantiated then
components are basically the same, since they have a
more or less identical static interface. (They differ in
their execution behavior, of course.)

• Yes, container types are tagged, but that’s mostly to
give you distinguished-receiver syntax. (Subprogram
parameters that are tagged are also implicitly aliased.)

6

Ordered Set
generic

type Element_Type is private;

with function "<" (L, R : Element_Type)
return Boolean is <>;

with function "=" (L, R : Element_Type)
return Boolean is <>;

package Ada.Containers.Ordered_Sets is

type Set is tagged private;
type Cursor is private;

7

generic

type Element_Type is private;

with function Hash (Element : Element_Type)
return Hash_Type;

with function Equivalent_Elements
(L, R : Element_Type) return Boolean;

with function "=" (L, R : Element_Type)
return Boolean is <>;

package Ada.Containers.Hashed_Sets is

type Set is tagged private;
type Cursor is private;

Hashed Set

8

Ordered Set or Hashed Set?

procedure Op (S : in out Set) is
C : Cursor;

begin
S.Insert (New_Item => E);

C := S.Find (Item => E);

S.Delete (Item => E);
end;

9

Cursors and (Passive) Iterators

• Containers are nothing. Elements are everything.
• A container exists for no other purpose than to

store and retrieve elements. Elements are not a
hidden detail.

• A cursor (and passive iterator) provides access to
the elements in a container, without exposing
container representation.

10

Machine Model

• Cursors allow the container to be viewed as an
abstract machine, with elements that are
logically contiguous.

• You navigate among element "addresses" using
a cursor, and "dereference" the cursor to get the
element at that address.

• The cursor design effectively abstracts-away
the container, since all you have are cursors,
and elements designated by cursors.

11

Active Iterator (Cursor)

procedure Op (Container : in Container_Type) is
C : Cursor := Container.First; -- factory
E : Element_Type;

begin
while Has_Element (C) loop

E := Element (C);
exit when Predicate (E);
Do_Something (E);
Next (C); --or: C := Next (C);

end loop;
end Op;

12

Active Iteration (Cursors)

• During active iteration, navigation among
cursor positions is controlled by the client.

• An active iterator (cursor) is appropriate when
more than one container (or more than a single
element within the same container) is being
visited simultaneously.

• Use an active iterator to terminate the iteration
without visiting every element in the container.

13

Passive Iterator

procedure Op (Container : Container_Type) is

procedure Process (C : Cursor) is
E : constant Element_Type := Element (C);

begin
Do_Something (E);

end;
begin

Container.Iterate (Process’Access);
end Op;

14

Passive Iteration

• During passive iteration, advancement is
controlled by the operation itself.

• The passive iterator visits every element in the
container. (It's designed for the common case.)

• Potentially more efficient than an active
iterator, since the passive iterator knows that it
is visiting all elements in sequence, and hence
can visit elements in a way that takes
advantage of the container’s representation.

15

Reverse Iteration

• All containers (except hashed) allow iteration
in both forward and reverse directions.

16

Active Iteration In Reverse
procedure Op (Container : in Container_Type) is

C : Cursor := Container.Last; -- factory
E : Element_Type;

begin
while Has_Element (C) loop

E := Element (C);
exit when Predicate (E);
Do_Something (E);
Previous (C); --or: C := Previous (C);

end loop;
end Op;

17

Passive Iteration In Reverse

procedure Op (Container : Container_Type) is

procedure Process (C : Cursor) is
E : constant Element_Type := Element (C);

begin
Do_Something (E);

end;
begin

Container.Reverse_Iterate (Process’Access);
end Op;

18

Constant View of Elements

• The Element function returns a copy of the
element in the container.

• However, if what you really want to do is just
query the element directly, then that function
can be relatively inefficient if the element is
expensive to copy (it's large, or controlled, etc).

• The operation Query_Element returns a
constant view of the actual container element.

19

procedure Op (C : Cursor) is
procedure Process (E : in Element_Type) is
begin

... -- do something with E
end;

begin
Query_Element (C, Process’Access);

end;

20

Variable View of Elements

• The Replace_Element procedure assigns a new
value to the element in the container.

• This operation alone is not general enough: we
often need a way to modify the element in
place, not simply replace its value.

• The operation Update_Element returns a
variable view of the actual container element.

21

procedure Op (C : Cursor) is
procedure Process (E : in out Element_Type) is
begin

... -- do something with E
end;

begin
Update_Element (C, Process’Access);

end;

22

“Tampers with Elements”

• When Process.all is executing from within
Query_Element or Update_Element, there are
things you can’t do to the container: Clear,
Move, Insert, etc. Basically anything that can
change container cardinality is verboten.

• You also cannot call any operation that would
replace the element you’re currently visiting:
Swap, Replace_Element, etc.

23

Sequence Containers

• Insert, Append, Prepend
• Find, Reverse_Find, Contains
• Delete, Delete_First, Delete_Last
• Element, Query_Element
• Replace_Element, Update_Element
• First, First_Element, Last, Last_Element
• Swap, Move, Generic_Sorting
• Iterate, Reverse_Iterate

24

Vectors

• Provides random access to elements.
• Complexity of Append is amortized constant

time. (But Prepend is linear time.)
• The vector model is that an internal array

automatically expands as necessary to store
more elements. (That’s the model. A vector
doesn’t have to be implemented as an array.)

25

Index-based Operations
declare

V : Vector;
I : Extended_Index;

begin
V.Append (New_Item => E);
I := V.Last_Index;

E2 := V.Element (Index => I);
V.Replace_Element (Index => I, By => E3);

V.Insert (Before => I, New_Item => E4);
V.Delete (Index => I);

V.Delete_Last;
end;

26

Cursor-based Operations
declare

V : Vector;
C : Cursor;

begin
V.Append (New_Item => E);
C := V.Last;

E2 := Element (Position => C);
Replace_Element (Position => C, By => E3);

V.Insert (Before => C, New_Item => E4);
V.Delete (Position => C);

V.Delete_Last;
end;

27

Index- vs. Cursor-based Operations

• Vectors are unique in that they have both
index-based and cursor-based operations.

• The cursor-based operations make it easier to
switch between a vector and some other
container (usually a list), and provide a
uniform syntax for iteration (that applies to all
containers). [See list ex. on p. 42.]

28

Capacity vs. Length

• The function Capacity returns the total amount of
internal storage. A vector automatically increases the
capacity during insertion, when the current length
(number of elements) equals the current capacity.

• Reserve_Capacity tells the vector to preallocate a
specified amount of internal storage. If you know the
total number of elements in advance of insertion, it’s
more efficient to reserve the necessary capacity, since
the expansion of the internal array is done only once.

29

procedure Copy (A : Array_Type) is
V : Vector;

begin
V.Reserve_Capacity (Capacity => A'Length);

for I in A'Range loop
V.Append (New_Item => A (I));

end loop;
...

end Copy;

30

Set_Length

• You can also set the vector length explicitly.
This can be used to either truncate the vector
(and hence throw elements away), or expand
the vector (in which case “empty” elements are
appended).

31

procedure Copy (A : Array_Type) is
V : Vector; --or := To_Vector (A'Length);
J : Extended_Index := No_Index;

begin
V.Set_Length (Length => A'Length);

for I in A'Range loop
J := J + 1;
V.Replace_Element(Index => J, By => A (I));

end loop;
...

end Copy;

32

Insert_Space

• Insert_Space is another way to reserve
capacity, by making room (“space”) in the
middle of the vector, without having an actual
element to insert.

33

procedure Copy
(A : in Array_Type;
V : in out Vector;
I : in Extended_Index) is

J : Extended_Index := I - 1;
begin

V.Insert_Space (Before => I, Count => A'Length);
-- dig the hole (no elements yet)

for K in A'Range loop
J := J + 1;

V.Replace_Element (Index => J, By => A (K));
-- fill the hole (with elements)

end loop;
...

end Copy;

34

Inserting Multiple Elements

• All insertion and deletion operations have a count
parameter (that defaults to 1) to control how many
elements are inserted or deleted. There are additional
overloadings of insertion operations, that accept a
vector as the New_Item parameter.

• In general, when you insert multiple elements into
a vector, you should try to do it in a way that
avoids repeated expansion of the internal array. If
you know how many elements you intend to insert,
then either Reserve_Capacity first, or Insert_Space, or
Set_Length, or specify the Count parameter of Insert.

35

Index-based Active Iteration

• As for any other container, you can use either a
passive iterator or a cursor-based active
iterator. However, since a vector also supports
index-based operations, you can also use a for
loop to iterate in the traditional way.

36

procedure Op (V : in Vector) is

procedure Process
(E : in Element_Subtype) is
begin
... -- do something with E

end Process;

begin -- Op

for I in V.First_Index .. V.Last_Index loop
V.Query_Element (I, Process’Access);

end loop;

end Op;

37

Move

• The Move operation moves, not copies, the
elements from one container to another.

• In the case of a vector, Move works by simply
transferring the internal array. For other
containers, Move is implemented similarly.

• Move makes it possible to use a container to
assemble elements in one part of a system, and
then move them to another part of the system.

38

L : Lists_Of_Vectors.List;
...
declare

Src : Vector;
begin

Src.Append (New_Item => E);
... --populate Src some more as appropriate

L.Append (New_Item => Empty_Vector);

declare
procedure Process (Tgt : in out Vector) is
begin

Move (Source => Src, Target => Tgt);
end;

begin
Update_Element (Last (L), Process’Access);

end;
end;

39

Swap

• Swap (logically) exchanges a pair of elements.
• Mostly intended to take advantage of the

representation of indefinite vectors, which
allocate each element.

• Swap is implemented (in the indefinite vector
case) by exchanging the internal pointers,
which can be potentially more efficient than
exchanging elements directly.

40

Find, Reverse_Find

• Every container has a Find operation to search for an
element. For vectors and lists, Find performs a linear
search from First to Last. (For the maps and sets, the
search works differently, and is definitely not linear.)

• For the sequence containers, there's also a
Reverse_Find, to search from Last to First.

• Vectors also have indexed-based versions: Find_Index
and Reverse_Find_Index.

• Search operations for the sequence containers have a
parameter (with a suitable default) to specify from
where to begin the search.

41

Lists

• Insertion and deletion have constant time
complexity at all positions.

• No random access.
• The list container is monolithic, not polylithic

(a la LISP); there is no structure sharing.
• Lists are often useful for implementing a

queue.

42

declare
L : List;
C : Cursor;

begin
L.Append (New_Item => E);
C := L.Last;

E2 := Element (Position => C);
Replace_Element (Position => C, By => E3);

L.Insert (Before => C, New_Item => E4);
L.Delete (Position => C);

L.Delete_Last;
end;

43

Splice, Sort, Merge, etc
• Use Splice to either move an element (really,

its node) within the same list or even from a
different list, or to move an entire list.

• Like a vector, lists can be sorted. Unlike a
vector, the sort is stable.

• A pair of sorted lists can be merged, such that
one list is spliced onto the other in sort order.

• Operation Reverse_List reverses a list.
• There’s a special Swap_Links for lists, to

exchange list nodes instead of elements.

44

Associative Containers

• Associative containers (maps, sets) store
elements ordered by key.

• Maps associate a separate key object with an
element. For a set, an element is its own key.

• There are both ordered (tree-based) and hashed
(hash table-based) versions.

45

Time Complexity

• Hashed associative containers have unit time
complexity, on average. This is good for fast lookup
of individual elements. (But note that execution
behavior of a hashed container is very sensitive to
quality of hash function.)

• Ordered associative containers have logarithmic time
complexity, even in the worst case. This predictability
is safer for real-time systems. Ordered containers are
good for iteration over ranges of elements.

46

Hashed Container Equivalence

• A hashed container first computes the hash
value of a new item, to find the bucket. It then
uses the generic formal equivalence function
(not equality) to compare the new item to the
existing elements in that bucket. [See example
on p.93.]

47

generic

type Element_Type is private;

with function Hash
(Element : Element_Type) return Hash_Type;

with function Equivalent_Elements
(Left, Right : Element_Type) return Boolean;

with function "=" (Left, Right : Element_Type)
return Boolean is <>;

-- ET."=" only used for Set."="; see p.74.

package Ada.Containers.Hashed_Sets is ...;

48

Ordered Container Equivalence

• During insertion in an ordered map or set, keys
are compared for equivalence, not equality.

• Ordered keys are equivalent if the following
relation (known as “strict weak ordering”) is
true:

not (L < R) and not (R < L)

49

generic

type Element_Type is private;

with function "<" (Left, Right : Element_Type)
return Boolean is <>;

with function "=" (Left, Right : Element_Type)
return Boolean is <>;

-- ET."=" only used for Set."="; see p.75.

package Ada.Containers.Ordered_Sets is ...;

50

Maps

• Keys and elements are stored as pairs, ordered
by key.

• For an ordered map, the “<“ relation for keys
determines the (sorted) order.

• For a hashed map, the bucket (and hence the
order) is determined by the hash value of the
key. If the hash function is performing well,
keys should be scattered throughout the hash
table, equally distributed among the buckets.

51

Membership Tests

• The Contains and Find operations are used to
determine whether an element is in the map. Use
Contains if all you need is a simple membership test.

• Find returns a cursor as its result. If the cursor object
has the distinguished value No_Element (or
equivalently, the predicate Has_Element returns
False), then the search failed and the key is not in the
map. Otherwise, the cursor designates the
key/element pair whose key matched.

52

Contains
M : Map;
...
procedure Op (Key : in Key_Type) is
begin

if M.Contains (Key) then
... -- do something

end if;
end Op;

53

Find
M : Map;
...
procedure Op (Key : in Key_Type) is

procedure Process (K : KT; E : ET) is
begin

... -- do something
end;

C : constant Cursor := M.Find (Key);
begin

if Has_Element (C) then
Query_Element (C, Process’Access);

end if;
end Op;

54

Hashed Map "="

• For each key in the left map, hashed map equality
searches for the key in the right map. That is, it first
computes the hash value of the left key to find the
right bucket, and then uses Equivalent_Keys to find
the equivalent key in that bucket. If an equivalent key
is found, it then compares elements using element
equality. (This is the only time when element equality
is actually used.)

• Note that both the key and the element are used to
compute hashed map equality, but key equality is not
used. (In fact key equality is never used in this API.)

55

generic

type Key_Type is private;
-- re-emergence of predefined "=" for KT is OK

type Element_Type is private;

with function Hash
(Key : Key_Type) return Hash_Type;

with function Equivalent_Keys
(Left, Right : Key_Type) return Boolean;

with function "=" (Left, Right : Element_Type)
return Boolean is <>;

-- need to pass in "=" for ET, since predefined
-- equality is not necessarily what we want

package Ada.Containers.Hashed_Maps is ...;

56

Ordered Map "="

• Unlike a hashed map, there’s no need for ordered map
"=" to search for the key, since the keys are already in
sort order.

• If the key in the left map is equivalent to the
corresponding key in the right map (equivalence being
defined in terms of key "<"), then ordered map "="
compares the associated elements for equality. (This
is the only time when element "=" is actually used.)

• Note that the key and element are both used to
compute ordered map equality, but key equality is not
used. (In fact key equality is never used in this API.)

57

generic

type Key_Type is private;
-- re-emergence of predefined "=" for KT is OK

type Element_Type is private;

with function "<" (Left, Right : Key_Type)
return Boolean is <>;

with function "=" (Left, Right : Element_Type)
return Boolean is <>;

-- need to pass in "=" for ET, since predefined
-- equality is not necessarily what we want

package Ada.Containers.Ordered_Maps is ...;

58

Insertion

• The Insert operation attempts to insert a key
(and element) into the map. If the key is
already in the map, then Insert raises C_E;
otherwise, it inserts the new key/element pair
in the map.

• Include (a variation of Insert) attempts to insert
the key, but if the key is already in the map, it
replaces the existing key/element pair with the
new key/element pair, instead of raising C_E.

59

Conditional Insertion

• Suppose we want to either insert a new element
if this is a new key, or modify the existing
element if the key already exists.

• One technique would be to first try to Find the
key, and if it's not found, then Insert the key in
the map.

60

Histogram : Map; -- String key, Integer element
...
procedure Add (Word : in String) is

procedure Increment_Count
(Key : in String; Count : in out Integer) is

begin
Count := Count + 1;

end;

C : constant Cursor := Histogram.Find (Word);
begin

if Has_Element (C) then -- found
Update_Element (C, Increment_Count’Access);

else
Histogram.Insert (Word, 1);

end if;
end Add;

61

Condition Insertion (cont’d)

• However, this technique is inefficient, because
Insert must perform its own search, thus
duplicating the search performed by Find.

• A more efficient technique would be to attempt
to insert the key, but instead of an exception,
let the insertion operation return a cursor (the
same as what Find does), and report back about
whether the insertion succeeded.

62

procedure Op (M : in out Map) is
C : Cursor;
B : Boolean;

begin
M.Insert -- MORE INFO ON NEXT SLIDE

(Key => K,
New_Item => E,
Position => C,
Inserted => B);

if B then -- new key/elem inserted
... -- C designates new key/elem

else –- key/elem not inserted
... –- C designates existing key/elem

end if;
end Op;

63

Conditional Insertion (cont’d)

• If Inserted returns True, then the key/element
pair was inserted into the map, and the cursor
designates the newly-inserted key/element pair.

• If Insert returns False, then the key was
already in the map, and the cursor designates
the existing key/element pair, which is not
modified.

64

Histogram : Map;
...
declare

Position : Cursor;
Inserted : Boolean;

begin
Histogram.Insert
(Key => Word,
New_Item => 0, --yes: try to insert 0
Position => Position,
Inserted => Inserted); --result doesn’t matter

Update_Element (C, Increment_Count’Access);
end;

65

Deletion

• An element can be deleted either by specifying its key,
or by specifying a cursor (that designates the
key/element pair).

• The key-based Delete raises Constraint_Error if the
key isn’t found in the map.

• Exclude (a variation of key-based Delete) does
nothing if the key isn’t in the map.

• The cursor-based Delete raises C_E if the cursor
equals No_Element, and raises Program_Error if the
cursor designates a node in some other map.

66

procedure Op (M : in out Map) is
C : Cursor;
B : Boolean;

begin
M.Insert (Key, E);
M.Delete (Key); -- by key

M.Insert (Key, E, C, B);
M.Delete (Position => C); -- by cursor

M.Insert (Key, E);
M.Exclude (Key); -- by key

end;

67

Replace, Replace_Element

• Replace searches the map to determine whether the
key is a member. If the key isn’t found, then it raises
Constraint_Error. Otherwise, it replaces the existing
key/element pair with the new key/element pair.

• Replace differs from Include only with respect to
whether the key is already in the map.

• If you simply want to assign a new value to an existing
element, then use Replace_Element.

68

Keys Get Updated Too

• A key might have interesting state of its own,
and so Include and Replace assign new values
to both the existing key and existing element.

• Sometimes the key assignment is more than
you really want, if you’re only interested in
elements. You can avoid unwanted key
assignment by using conditional Insert
combined with Replace_Element.

69

M : Map;

procedure Op (K : KT; E : ET) is
begin

M.Include (K, E); -- replaces key too
end;

procedure Op2 (K : KT; E : ET) is
C : Cursor;
B : Boolean;

begin
M.Insert (K, E, C, B);

if not B then
Replace_Element (C, By => E);

end if;
end Op2;

70

Hashed Container Capacity
• As elements are inserted into the hashed container, the

internal hash table automatically expands when it
becomes full (defined as capacity = length).

• The standard does not specify what the load factor is.
It says only that capacity is the maximum length
before which no automatic rehashing will occur.

• You need to care about rehashing, because it’s
expensive. If you know the total number of elements
prior to insertion, use Reserve_Capacity to preallocate
the buckets array, and thus avoid rehashing.

71

procedure Op (N : Count_Type) is
M : Map;

begin
M.Reserve_Capacity (N); -- Capacity >= N

for I in Count_Type range 1 .. N loop
M.Insert -- no resizing will occur
(Key => New_Key (I),
New_Item => New_Element (I));

end loop;
...

end Op;

72

Sets

• A set is like a map, with the difference that in a
set an element is its own key. There is no
separate key object, and only the element is
stored in the container.

• Ordered sets are often useful for implementing
a priority queue.

73

procedure Op (S : in out Set) is
C : Cursor;
B : Boolean;

begin
S.Insert (E); -- can raise CE
S.Insert (E2, C, B); -- conditional
S.Include (E3); -- does not raise CE

C := S.Find (E3);

if Has_Element (C) then -- found
...

end if;

S.Delete (Item => E);
S.Delete (Position => C);
S.Exclude (Item => E2);

end Op;

74

Hashed Set "="

• Searches normally work by computing the hash
value of the item to find the bucket, and then
using Equivalent_Elements to find the
matching element in the bucket.

• Hashed set equality works a little differently.
It uses element equality ("=") to compare the
item to the elements in the bucket. This is the
only time when element equality is used.

75

Ordered Set "="

• Computing ordered set equality is
straightforward: since the elements are already
in (sorted) order, there’s no need for a search.
Each element in one set is simply compared to
the corresponding element in the other set,
using element equality. This is the only time
when element equality is used.

76

Equivalent_Sets

• Interestingly, set containers actually have two
ways of being compared. We have already
seen the first way, set equality ("="), which is
implemented in terms of element equality.

• The second way, Equivalent_Sets, is
implemented in terms of the equivalence
relation for elements. (Equivalent_Elements
for hashed sets, and "<" for ordered sets.)

77

Classic Set Operations

• Set containers also have the traditional
operations for sets: Union, Intersection,
Difference, and Symmetric_Difference.

• Each operation has procedure, function, and
operator forms.

• There are also Overlap and Is_Subset
operations.

78

Generic_Keys

• The Generic_Keys nested package can be used
to manipulate a set in terms of a key.

• Useful when the element is a record, and the
element’s key is a component of the record.

• Solves the problem of finding a set element if
you only know its key-part, and can't easily
synthesize a nonce element to use as the search
item.

79

type Employee_Type is record
SSN : SSN_Type;
...

end record;

procedure "<" (L, R : Employee_Type)
return Boolean is

begin
return L.SSN < R.SSN;

end;

package Employee_Sets is
new Ada.Containers.Ordered_Sets

(Employee_Type, "<");

80

Employees : Employee_Sets.Set;

procedure Add (SSN : in SSN_Type) is
E : Employee_Type;

begin
E.SSN := SSN;
E.Name := ...;

Employees.Insert (E);
end Op;

81

procedure Change_Address
(SSN : in SSN_Type;
Home : in Address_Type) is

C : Cursor := Employees.Find (Key => SSN); --?
-- Find takes an Employee_Type, not an
-- SSN_Type, so the code above won't compile.

begin
...

end Op;

82

function Get_SSN (E : Employee_Type) return SSN_Type is
begin

return E.SSN;
end;

function "<" (SSN : SSN_Type;
E : Employee_Type) return Boolean is

begin
return SSN < E.SSN;

end;

function ">" (SSN : SSN_Type;
E : Employee_Type) return Boolean is

begin
return SSN > E.SSN;

end;

package SSN_Keys is new Employee_Sets.Generic_Keys
(Key_Type => SSN_Type,
Key => Get_SSN,
"<" => "<",
">" => ">");

83

procedure Change_Address
(SSN : in SSN_Type;
Home : in Address_Type) is

procedure Set_Home (E : in out Employee_Type) is
begin

E.Home := Home; --benign change
end;

Position : constant Cursor :=
SSN_Keys.Find (Employees, Key => SSN); --OK

begin
if Has_Element (Position) then

SSN_Keys.Update_Element_Preserving_Key
(Container => Employees,
Position => Position,
Process => Set_Home’Access);

end if;
end Op;

84

Miscellaneous

• Each container has different forms for definite
and indefinite formal types. Useful when type
String is the generic actual element or key type.

• The container library has generic operations for
sorting both constrained and unconstrained
arrays.

• There are also hash functions for String and
Unbounded_String, and their wide string
equivalents.

85

Word Frequency Example

• Suppose we are given the task of counting the
frequency of each word in a file, and then
displaying the results in frequency order.

86

Solution #1

• Instantiate an indefinite map (hashed or
ordered -- it doesn't matter which) indexed by
String. Use the map to collect the word
frequencies.

• Allocate an array of map cursors, and then sort
the array in frequency order.

87

with Ada.Containers.Indefinite_Hashed_Maps;
pragma Elaborate_All (Ada.Containers.Indefinite_Hashed_Maps);

with Ada.Strings.Hash;

package String_Integer_Maps is

new Ada.Containers.Indefinite_Hashed_Maps
(String,
Integer,

Ada.Strings.Hash,
"=");

pragma Preelaborate (String_Integer_Maps);

88

M : String_Integer_Maps.Map;
...
procedure Insert (Word : String) is

procedure Increment (K : String; E : in out Integer) is
pragma Unreferenced (K);

begin
E := E + 1; -- this is the count

end;

C : Cursor;
B : Boolean;

begin
M.Insert (Word, 0, C, B); -- yes, try to insert 0
Update_Element (C, Increment'Access);

end Insert;

89

type Cursor_Array is
array (Count_Type range <>) of String_Integer_Maps.Cursor;

A : Cursor_Array (1 .. M.Length);
...
Populate_Cursor_Array:

declare
I : Count_Type := A'First;

procedure Process (C : String_Integer_Maps.Cursor) is
begin
A (I) := C;

I := I + 1;
end;

begin

M.Iterate (Process'Access);
end Populate_Cursor_Array;

90

Sort_Cursor_Array:

declare
function "<" (L, R : String_Integer_Maps.Cursor) return Boolean is

LE : constant Integer := Element (L); -- L freq

RE : constant Integer := Element (R); -- R freq
begin

if LE = RE then -- counts match, so use word
return Key (L) > Key (R); -- order to break tie

else

return LE > RE; -- sort in freq order
end if;

end "<";

procedure Sort is new Ada.Containers.Generic_Array_Sort
(Count_Type,
String_Integer_Maps.Cursor,

Cursor_Array,
"<");

begin
Sort (A);

end Sort_Cursor_Array;

91

Print_Cursor_Array:
for I in A'Range loop

Put (Element (A (I))); -- freq
Put (' ');
Put (Key (A (I))); -- word
New_Line;

end loop Print_Cursor_Array;

92

Solution #2

• Use a set with a word/count pair as the
element.

93

type Data_Type (Word_Length : Positive) is record
Word : String (1 .. Word_Length); -- key-part
Count : Natural; -- payload

end record;

function Hash (Data : Data_Type) return Hash_Type is

begin
return Ada.Strings.Hash (Data.Word); -- hash of key-part

end;

function Equivalent (L, R : Data_Type) return Boolean is
begin

return L.Word = R.Word; -- compare just key-parts
end;

package Data_Sets is new Ada.Containers.Indefinite_Hashed_Sets
(Data_Type,
Hash,

Equivalent); -- ex. of why ET."=" isn't good enough

94

function Get_Word (Data : Data_Type) return String is
begin

return Data.Word;
end;

function Equivalent (Word : String; Data : Data_Type)
return Boolean is

begin
return Word = Data.Word; -- compare key to key-part

end;

package Word_Keys is new Data_Sets.Generic_Keys
(String,
Get_Word,
Ada.Strings.Hash,
Equivalent);

95

Data_Set : in out Data_Sets.Set;

procedure Insert (Word : in String) is
procedure Inc_Count (Data : in out Data_Type) is
begin

Data.Count := Data.Count + 1; -- update payload
end;

C : Data_Sets.Cursor;
B : Boolean;

begin
Data_Set.Insert ((Word'Length, Word, 0), C, B);

Word_Keys.Update_Element_Preserving_Key
(Data_Set, C, Inc_Count'Access);

end Insert;

96

Solution #3

• The indefinite vector has properties that make it an
attractive alternative to sets and maps. It has less
storage overhead, since there's no element node (just
the element). And the elements are allocated, so the
cost of insertion is relatively low (since only pointers
to elements are moved, not elements).

• Here we use a binary search to find the insertion
position such that the vector always remains sorted.

• A separate array of cursors, that we sort after
collecting all the words, isn't necessary when using a
vector, since we can explicitly sort the vector itself.

97

type Data_Type (Word_Length : Positive) is record

Word : String (1 .. Word_Length); -- key-part
Count : Natural; -- payload

end record;

package Data_Vectors is new Ada.Containers.Indefinite_Vectors
(Positive,

Data_Type);

98

Data_Vector : Data_Vectors.Vector;

procedure Insert (Word : in String) is

I : Data_Vectors.Index_Subtype := Data_Vector.First_Index;

J : Data_Vectors.Extended_Index := Data_Vector.Last_Index;
K : Data_Vectors.Index_Subtype;
Done : Boolean := False;

procedure Process_K (Data : in out Data_Type) is

begin
if Data.Word < Word then

I := K + 1;

elsif Data.Word > Word then
J := K - 1;

else -- found equivalent word
Data.Count := Data.Count + 1; -- inc word count

Done := True;
end if;

end Process_K;

...

99

...

begin -- Insert

while I <= J loop -- binary search

K := I + (J - I) / 2;

Data_Vector.Update_Element (K, Process_K'Access);

if Done then
return;

end if;

end loop;

Data_Vector.Insert (I, Data_Type'(Word'Length, Word, 1));

-- Word wasn't found: insert new word with count=1.

end Insert;

100

Sort_Data:
declare

function "<" (L, R : Data_Type)
return Boolean is

begin
if L.Count = R.Count then

return L.Word > R.Word;
else

return L.Count > R.Count;
end if;

end "<";

package Sorting is
new Data_Vectors.Generic_Sorting ("<");

begin
Sorting.Sort (Data_Vector);

end Sort_Data;

	Ada 2005 Standard Container Library
	Useful Links
	Container Taxonomy
	Time Complexity
	Static Polymorphism
	Ordered Set
	Hashed Set
	Ordered Set or Hashed Set?
	Cursors and (Passive) Iterators
	Machine Model
	Active Iterator (Cursor)
	Active Iteration (Cursors)
	Passive Iterator
	Passive Iteration
	Reverse Iteration
	Active Iteration In Reverse
	Passive Iteration In Reverse
	Constant View of Elements
	
	Variable View of Elements
	
	“Tampers with Elements”
	Sequence Containers
	Vectors
	Index-based Operations
	Cursor-based Operations
	Index- vs. Cursor-based Operations
	Capacity vs. Length
	Set_Length
	Insert_Space
	Inserting Multiple Elements
	Index-based Active Iteration
	Move
	Swap
	Find, Reverse_Find
	Lists
	Splice, Sort, Merge, etc
	Associative Containers
	Time Complexity
	Hashed Container Equivalence
	Ordered Container Equivalence
	Maps
	Membership Tests
	Contains
	Find
	Hashed Map "="
	Ordered Map "="
	Insertion
	Conditional Insertion
	Condition Insertion (cont’d)
	Conditional Insertion (cont’d)
	Deletion
	Replace, Replace_Element
	Keys Get Updated Too
	Hashed Container Capacity
	Sets
	Hashed Set "="
	Ordered Set "="
	Equivalent_Sets
	Classic Set Operations
	Generic_Keys
	Miscellaneous
	Word Frequency Example
	Solution #1
	Solution #2
	Solution #3

