
Tutorial:
Charles Container Library

Ada-Europe 2004
Palma de Mallorca, Spain

presented by
Matthew Heaney

mailto:matthewjheaney@earthlink.net
http://home.earthlink.net/~matthewjheaney/

http://charles.tigris.org/

mailto:matthewjheaney@earthlink.net?subject=charles library tutorial
mailto:matthewjheaney@earthlink.net?subject=charles library tutorial
http://home.earthlink.net/~matthewjheaney/
http://charles.tigris.org/
http://charles.tigris.org/

2

Library Design

• The library designer has many goals:
maximizing flexibility, generality, efficiency,
safety, ease of use, simplicity, elegance, etc.

• The library designer must arbitrate among
these goals, which are often in conflict.

3

Flexibility

• The library designer can’t anticipate every
library user’s specific need, so it’s best to
provide flexible primitives that can be easily
combined.

• Flexibility is often in conflict with ease of use
and safety, so the designer must sometimes
walk a fine line.

4

Efficiency

• The library must be as least as efficient as
what a user can write himself, otherwise he
won’t use the library.

5

Safety

• To make a completely unbreakable abstraction,
you’ll have to give something else up, either
flexibility or efficiency.

• The library designer should defer to the library
user how best to provide safety.

• Flexible and efficient library primitives can be
combined to make a safe abstraction, but the
opposite is not true.

6

Design Philosophy

• A library should stay out of the user’s way.
• It’s easy to do common things, and possible to

less common things.
• Library primitives are easily composable.

7

Containers

• Sequence containers (vectors, deques, lists)
store unordered elements, which are inserted at
specified positions.

• Associative containers (sets, maps) store
elements in key order.

8

Time Complexity

• The time complexity of operations is specified.
It is not a implementation detail.

• Different containers have different time and
space semantics. You instantiate the
component that has the properties you desire.

9

Static Polymorphism

• It is helpful to make a distinction between instantiating
a generic component versus using the instantiated
component.

• The generic formal region of components can differ.
However, once the component has been instantiated,
then the differences more or less disappear, because
each component has more or less the same interface.

10

Sorted Set
generic

type Element_Type is private;

with function "<" (L, R : Element_Type)
return Boolean is <>;

with function "=" (L, R : Element_Type)
return Boolean is <>;

package Charles.Sets.Sorted.Unbounded is

type Container_Type is private;
type Iterator_Type is private;

11

Hashed Set
generic

type Element_Type is private;

with function Hash (Item : Element_Type)
return Hash_Type is <>;

with function "=" (L, R : Element_Type)
return Boolean is <>;

package Charles.Sets.Hashed.Unbounded is

type Container_Type is private;
type Iterator_Type is private;

12

Sorted Set or Hashed Set?

procedure Op
(Set : in out Element_Sets.Container_Type) is

I : Element_Sets.Iterator_Type;
begin

Insert (Set, New_Item => E);

I := Find (Set, Item => E);

Delete (Set, Item => E);
end;

13

Iterators

• Elements are everything. Containers are
nothing.

• The purpose of an iterator is to provide access
to the elements in a container, without
exposing container representation.

• Elements are not a hidden detail, and the
library takes pains to ensure that access to
elements is easy and efficient.

14

Machine Model

• Iterators allow the container to be viewed as an
abstract machine, containing elements that are
logically contiguous.

• You navigate among element "addresses" using
an iterator, and "dereference" the iterator to get
the element at that address.

15

Iterator Type Properties

• For full generality, the iterator type is definite
and nonlimited. It thus has the same properties
as a plain access type.

• An indefinite or limited iterator type is not
sufficiently general, among other reasons
because we wouldn't be able to store an iterator
object as a container element.

16

Iterator Representation

• An iterator type hides container representation
details. It is implemented as a thin wrapper
around an access type that designates a node of
internal storage.

• An iterator type does not confer any safety
benefits above and beyond what is available for
an ordinary access type.

17

Half-Open Range

• An iterator pair is used to denote a half-open
range of (logically) contiguous elements.

• The first iterator denotes the first element in
the range, and the second iterator denotes the
(logical) element one beyond the last element
of the range.

• For the range corresponding to all of the
elements in a container, falling off the end
(onto the Back sentinel) indicates completion
of the iteration.

18

Active vs. Passive Iteration

• During active iteration, advancement of the
iterator value is controlled by the client.

• During passive iteration, iterator advancement
is controlled by the operation.

• An active iterator is appropriate when more
than one container is being visited
simultaneously, although the approaches can
be combined.

19

procedure Op (C : Container_Subtype) is
I : Iterator_Type := First (C);
J : constant Iterator_Type := Back (C);

begin
while I /= J loop

declare
E : constant Element_Type :=

Element (I);
begin

Do_Something (E);
end;

I := Succ (I);
end loop;

end Op;

20

procedure Op (C : Container_Subtype) is

procedure Iterate is
new Generic_Select_Elements

(Process => Do_Something);
begin

Iterate (First (C), Back (C));
end Op;

21

Stacks and Queues

• There are no “stack” or “queue” containers in
Charles, because that functionality is already
provided by the sequence containers.

• Stack functionality is provided by the vector,
and queue functionality by the deque or list. A
sorted set or map can be used as a priority
queue.

• If you need to restrict access to only the end of
the container, implement that feature yourself
using a thin layer on top of vector, deque, or
list.

22

Vectors

• Provides random access to elements.
• Complexity of insertion at back end is

amortized constant time.
• Internal array automatically expands as

necessary to store more elements. New size of
array is a function of its current size.

23

declare
V : Vector_Subtype;

begin
Append (V, New_Item => E);
Delete_Last (V);

Insert (V, Before => I, New_Item => E);
Delete (V, Index => I);

E := Element (V, Index => I);
Replace_Element (V, Index => I, By => E);

end;

24

Vector Implementation

• Implemented internally as a contiguous array,
with C convention.

• Function Size returns length of internal array.
• Use Resize to manually increase length of

internal array; insertion is more efficient when
expansion is done only once.

25

procedure Copy (A : Array_Subtype) is
V : Vector_Types.Container_Type;

begin
Resize (V, Size => A'Length);
--If you know size prior to insertion,
--resize first to avoid reallocation.

for I in A'Range loop
Append (V, New_Item => A (I));

end loop;
...

end Copy;

26

procedure Copy
(A : in Array_Subtype;
V : in out Vector_Subtype;
I : in Index_Type'Base) is

J : Index_Type'Base := I;
begin

Insert_N (V, Before => I, Count => A'Length);
-- dig the hole

for Index in A'Range loop
Replace_Element (V, J, By => A (Index));
-- fill the hole

J := J + 1;
end loop;
...

end Copy;

27

procedure Process
(E : in Element_Subtype) is ...;

procedure Op
(V : in Vector_Subtype) is

begin
for I in First (V) .. Last (V) loop

Process (E => Element (V, I));
end loop;

end Op;

28

Swap

• The internal arrays of two vectors can be
exchanged using Swap.

• Swap is useful for moving a vector from one
object to another, in contrast to assignment
which copies the vector object.

• Swap is also useful for deallocating the internal
array, as neither Clear nor Delete deallocates
memory.

29

L : List_Of_Vectors.Container_Type;
...
declare

V : Vector_Types.Container_Type;
I : List_Of_Vectors.Iterator_Type;

begin
Append (V, New_Item => E);
... --populate V as appropriate
Insert --insert default-initialized element
(Container => L,
Before => Back (L), --means append here
Iterator => I); --out param designates element

declare
V2 : Vector_Access renames To_Access (I).all;

begin
Swap (V, V2); --move, don’t copy, vector object

end;
end;

30

Bounded Vector

• Uses discriminant to specify size of stack-
allocated internal array.

• Type isn’t controlled, so it may be instantiated
at any nesting level.

• Insertion raises exception if storage has already
been exhausted.

31

Handles : Handle_Vectors.Container_Type (64); -- Win max
...
Append (Handles, New_Item => H1);
Append (Handles, New_Item => H2);
...
Append (Handles, New_Item => H65); --Constaint_Error

type Handle_Access is access all Win32.HANDLE;
for Handle_Access'Storage_Size use 0;
pragma Convention (C, Handle_Access);

function To_Access is
new Handle_Vectors.Generic_Element (Handle_Access);

WaitForMultipleObjects
(Length (Handles),
To_Access (Handles, Index => First (Handles)),
False,
INFINITE);

32

Deques (Double-Ended Queue)

• Like a vector, it provides random access to
elements.

• Unlike a vector, insertion at front end has
constant time complexity.

• Insertion in middle slides elements towards the
nearest end to make room for the new item(s).

33

declare
D : Deque_Subtype;

begin
Append (D, New_Item => E);
Delete_Last (D);

Prepend (D, New_Item => E);
Delete_First (D);

E := Element (D, Index => I);
Replace_Element (D, Index => I, By => E);

end;

34

Vector vs. Deque Storage

• A vector uses a contiguous array to store elements.
• A deque stores its elements on fixed-size blocks, and

uses an offset to keep track of the first active element
(on the first block).

• Prepend is only O(1) for a deque because it can simply
decrement the offset of the first active element, and
allocate a new block if necessary.

35

Vector vs. Deque Expansion

• Expansion in a vector works by allocating a
new array, copying active elements from the
old array onto the new array, and then
deallocating the old array. (Note: Resize can
be used to pre-allocate.)

• Expansion in a deque works by simply
allocating a new block; there is no copying or
deallocation.

• A deque is therefore potentially more efficient
when the number of elements is large, and
cannot be determined in advance of insertion.

36

Loops vs. Passive Iterators

• Both a vector and deque allow index-style
iteration using a traditional for loop.

• However, if the container knows that it's
visiting elements in sequence (as is the case in
a passive iterator), then it can visit the elements
in a way that takes advantage of that
container's representation.

37

procedure Op (D : in Deque_Types.Container_Type) is
begin

for I in First (D) .. Last (D) loop
Do_Something (Element (D, I));

end loop;
end;

--VERSUS--

procedure Op (D : in Deque_Types.Container_Type) is

procedure Iterate is
new Generic_Constant_Iteration (Do_Something);

begin
Iterate (D);

end;

38

Lists

• Insertion has constant time complexity, at all
positions.

• No random access.
• The list container is monolithic, not polylithic

(a la LISP); there is no structure sharing.

39

declare
L : List_Types.Container_Type;
I : Iterator_Type;

begin
Insert

(Container => L,
Before => Back (L), --sentinel
New_Item => E,
Iterator => I);

E := Element (I);
Replace_Element (Iterator => I, By => E);

Delete (L, Iterator => I);
end;

40

Sentinel

• A list (and sets and maps) has a special sentinel
node that is automatically allocated when the
list object elaborates.

• The sentinel is designated by the iterator value
returned by selector function Back.

• The sentinel has wrap-around semantics,
meaning that the successor of Last is Back, and
the predecessor of First is Back.

41

procedure Op (L : in List_Types.Container_Type) is

I : Iterator_Type := First (L);
J : constant Iterator_Type := Back (L);

begin
while I /= J loop

Process (Element (I));
I := Succ (I);

end loop;
end Op;

42

procedure Op (L : in List_Types.Container_Type) is

I : Iterator_Type := Last (L);
J : constant Iterator_Type := Back (L);

begin
while I /= J loop

Process (Element (I));
I := Pred (I);

end loop;
end Op;

43

Splice, Sort, and Merge

• Nodes in one list can be moved onto another
list using Splice. Useful for implementing a
holding area, e.g. a simple free store.

• Lists can sorted. The sort is stable.
• A pair of sorted lists can be merged, such that

all the nodes one list are spliced onto another
list in sort order.

44

Variable View of Elements

• The Element function returns a copy of the
element in the container.

• The Replace_Element procedure assigns a new
value to the element in the container.

• This is not sufficient: we often need a way to
modify the element, not simply replace its
value. Example: a container whose elements
are another container.

45

Dereferencing an Iterator

• The Generic_Element function returns an
access object that designates the actual
element, allowing in-place modification.

• Has the sense of a dereference operator.
• This is the best we can do in the absence of

reference types a la C++.

46

type List_Access is
access all List_Subtype;

function To_Access is
new Generic_Element (List_Access);

procedure Op (I : Iterator_Type) is
L : List_Subtype renames

To_Access (I).all;
begin

Append (L, E); -- in-place modification
end;

47

Single Lists

• Internal storage nodes have only one link, to
the next (successor) node.

• Only forward iteration is supported.
• The single list caches a pointer to the last node,

so Append is only O(1) time complexity. This
allows the single list to provide queue
functionality, but with a lesser storage cost
than a double list.

48

Double and Single Bounded Lists

• Maximum length is specified using a
discriminant.

• Is not controlled, so it may be instantiated at
any nesting level.

49

procedure Print (Histogram : in Map_Types.Container_Type) is

package List_Types is -- nested instantiation is allowed
new Charles.Lists.Double.Bounded

(Element_Type => Map_Types.Iterator_Type);

List : List_Types.Container_Type (Size => Length (Histogram));

procedure Process (I : in Map_Types.Iterator_Type) is
begin

Append (List, New_Item => I);
end;

procedure Populate_List is
new Maps_Types.Generic_Iteration; -- use default name

begin -- Print

Populate_List (Histogram);

... -- see next slide

end Print;

50

begin -- Print

Populate_List (Histogram);

Sort_List:
declare

function "<" (L, R : Map_Types.Iterator_Type)
return Boolean is

begin
return Element (L) > Element (R); -- yes: count

end;

procedure Sort is
new List_Types.Generic_Sort; -- use "<" default

begin
Sort (List);

end Sort_List;

... -- see next slide

end Print;

51

begin -- Print
...
Print_Sorted_List:
declare

procedure Process -- prints "n:word" to stdout
(I : in List_Types.Iterator_Type) is
J : Map_Types.Iterator_Type := Element (I);

begin
Put (Element (J), Width => 0); -- the count
Put (':');
Put (Key (J)); -- the word
New_Line;

end;

procedure Print_Results is
new List_Types.Generic_Iteration;

begin
Print_Results (List);

end Print_Sorted_List;

end Print;

52

Associative Containers

• Associative containers (sets, maps) store
elements ordered by key.

• There are both sorted (tree-based) and hashed
(hash table-based) versions.

• Multimaps allow keys to be equivalent (sorted)
or equal (hashed). Multisets allow elements to
be equivalent or equal.

53

Worst Case vs. Average Case

• Sorted associative containers guarantee that
insertion has worst-case logarithmic time
complexity.

• Hashed associative containers have unit time
complexity on average.

54

Strict Weak Ordering

• During insertion, keys in a sorted set or map
are compared for “equivalence,” not equality.

• Keys are the “equivalent” if the following
relation is true:

not (L < R) and not (R < L)

55

Sets vs. Maps

• There is only a subtle difference between a set
and a map: a set has only an element, and a
map has a key/element pair.

• Sets have a nested generic, Generic_Keys, that
allows you to perform key-based manipulation
(Find, Delete, etc) of elements, very similar to
a map.

56

Maps

• Elements are stored in key order (“<“ for
sorted map, hash value for hashed map).

• Internally, keys and elements are stored as
pairs.

• Appropriate for elements whose key is separate
from element.

57

Membership Tests

• The Find operation is used to determine
whether an element is in the map.

• Find returns an iterator as its result. If the
iterator has the distinguished value Back, then
the search failed and the element is not in the
map. Otherwise, the iterator designates the
key/element pair whose key matched.

58

procedure Op (M : in out Map_Subtype) is
I : Iterator_Type;

begin
I := Find (M, Key => K);

if I /= Back (M) then
declare

E : Element_Subtype renames
To_Access (I).all;

begin
... -- modify E as desired

end;
end if;

end Op;

59

Conditional Insertion

• In a map, keys are unique. If you attempt to
insert a key already in the map, then the
insertion will fail. How should this be
reported?

60

Conditional Insertion

• One technique is to raise an exception. To
avoid the exception (which indicates that a
precondition has been violated), we could try
to Find the key, and if it's not found then Insert
the key/element pair in the map.

• However, that would be inefficient, because
Insert must perform a search internally, thus
duplicating the search performed by Find.

61

Histogram : Map_Types.Container_Type;
...
declare
I : Iterator_Type := Find (Histogram, Word);

begin
if I = Back (Histogram) then -- not found

Insert (Histogram, Word, 1);
else
declare
N : Integer renames To_Access (I).all;

begin
N := N + 1;

end;
end if;

end;

62

Condition Insertion (cont’d)

• A more efficient technique is to attempt to
insert the key, but let the insertion operation
report whether the insertion was successful.

• Here the precondition is weaker, and so there is
no exception if the key is already in the map.

63

Conditional Insertion (cont’d)

• If Insert returns success, then the key/element
pair was inserted into the map, and the iterator
designates the newly-inserted key/element pair.

• If Insert returns not success, then the key was
already in the map, and the iterator designates
the existing key/element pair, which is not
modified.

64

procedure Op (M : in out Map_Subtype) is
I : Iterator_Type;
B : Boolean;

begin
Insert

(Container => M,
Key => K,
New_Item => E,
Iterator => I,
Success => B);

if B then -- new key inserted
... -- I designates new key/elem

else –- key not inserted
... –- I designates existing key/elem

end if;
end Op;

65

Histogram : Map_Types.Container_Type;
...
declare
Iterator : Iterator_Type;
Success : Boolean;

begin
Insert
(Container => Histogram,
Key => Word,
New_Item => 0, --yes: try to insert 0
Iterator => Iterator,
Success => Success); --result doesn’t matter

declare
N : Integer renames To_Access (Iterator).all;

begin
N := N + 1; --inc result

end;
end;

66

Replace

• Replace searches the map to determine whether the
key is a member. If the key is already in the map, then
the element associated with that key is replaced by the
new value. Otherwise, the new key/element pair is
inserted in the map.

• Similar to element assignment (see Replace_Element),
but with the difference that a new key is created if it
doesn’t already exist.

67

Replace --similar to M(K) := E;
(Container => M,
Key => K,
New_Item => E);

--SAME AS:

declare
I : Iterator_Type;
B : Boolean;

begin
Insert (M, K, E, I, B);

if not B then
Replace_Element (I, By => E);

end if;
end;

68

Hashed-Map Resize

• A hashed map is implemented using a hash table. As
elements are inserted, the hash table expands when it
becomes full, in order to preserve the load factor
(α=1).

• As with a vector, if you know the total number of
elements prior to insertion, use Resize to preallocate
the buckets array.

• The buckets array is expanded to a length
corresponding to a prime number. This produces
better scatter when the hash value of the key is
reduced modulo the size.

69

procedure Op (N : Natural) is
Map : Map_Types.Container_Type; -- Size = 0

begin
Resize (Map, Size => N); -- Size >= N

for I in 1 .. N loop
Insert --no resizing will occur

(Container => Map,
Key => New_Key (I),
New_Item => New_Element (I));

end loop;
...

end Op;

70

Deletion

• An element can be deleted either by specifying
its key, or by specifying an iterator that
designates the element.

• Deletion by iterator is probably more efficient,
since there is no need to search for the key.
(The iterator already designates the internal
node of storage containing the key.)

71

procedure Op (Map : in out Map_Subtype) is
I : Iterator_Type;

begin
Insert (Map, Key, E);
Delete (Map, Key); -- by key

Insert (Map, Key, E, Iterator => I);
Delete (Map, Iterator => I); -- by iter

end;

72

procedure Finalize (Map : in out Map_Subtype) is
I : Iterator_Type := First (Map);
J : constant Iterator_Type := Back (Map);

begin
while I /= J loop

declare
E : Element_Subtype renames

To_Access (I).all;
begin

Finalize (E); -- or whatever
end;

Delete (Map, Iterator => I); --inc I
end loop;

end Op;

73

Multimaps

• A multimap allows multiple keys to be
equivalent (sorted) or equal (hashed).

• There is no conditional insert, because all
insertions succeed.

74

procedure Op (M : in out Map_Subtype) is
I : Iterator_Type;

begin
Insert -- no success parameter needed

(Container => M,
Key => K,
New_Item => E,
Iterator => I);

... -- I designates new key/element
end Op;

75

(Sorted) Equivalent Range

• Equivalent keys in a sorted multimap are
contiguous, which means the range can be
described using a half-open range iterator pair.

• Lower_Bound returns the smallest key in the
map not less than a specified key.

• Upper_Bound returns the smallest key in the
map greater than a specified key.

76

procedure Op (M : in Sorted_Map_Subtype) is
I : Iterator_Type := Lower_Bound (M, K);
J : Iterator_Type := Upper_Bound (M, K);

begin
while I /= J loop

declare
E : Element_Subtype renames

To_Access (I).all;
begin

...
end;

I := Succ (I);
end loop;
...

end Op;

77

(Hashed) Equal Range

• Equal keys in a hashed multimap are stored
contiguously in the same bucket.

• The simplest way to iterate over the range of
equal keys is to use the passive iterator
Generic_Equal_Range.

78

procedure Op (M : in Hashed_Map_Subtype) is

procedure Process (I : Iterator_Type) is
E : Element_Subtype := Element (I);

begin
...

end;

procedure Iterate is
new Generic_Equal_Range (Process);

begin
Iterate (M, Key => K);

end Op;

79

Sets

• Like a map, except that an element is its own
key.

• There is no separate key object, and only the
element is stored in the container.

80

procedure Op (S : in out Set_Subtype) is
I : Iterator_Type;

begin
Insert (S, E);
Insert (S, E2, I);

I := Find (S, E3);

if I /= Back (S) then -- found
...

end if;

Delete (S, Item => E);
Delete (S, Iterator => I);

end Op;

81

Generic_Keys

• The Generic_Keys nested package can be used
to manipulate a set in terms of a key.

• Useful when the element is a record, and the
element’s key is a component of the record.

• Solves the problem of finding an element if
you only know its key.

82

type Employee_Type is record
SSN : SSN_Type;
...

end record;

procedure "<" (L, R : Employee_Type)
return Boolean is

begin
return L.SSN < R.SSN;

end;

package Employee_Sets is
new Charles.Sets.Sorted.Unbounded

(Employee_Type, "<");

83

Employees : Employee_Sets.Container_Type;

procedure Add (SSN : in SSN_Type) is
E : Employee_Type;
I : Iterator_Type;
B : Boolean;

begin
E.SSN := SSN;
E.Name := ...;

Insert (S, E, I, Success => B);

if not B then -- already in database
...

end Op;

84

procedure Change_Address
(SSN : in SSN_Type;
Home : in Address_Type) is

I : Iterator_Type :=
Find (Employees, Key => SSN); --?

begin
...

end Op;

85

function "<" (SSN : SSN_Type;
E : Employee_Type) return Boolean is

begin
return SSN < E.SSN;

end;

function ">" (SSN : SSN_Type;
E : Employee_Type) return Boolean is

begin
return SSN > E.SSN;

end;

package SSN_Keys is
new Employee_Sets.Generic_Keys

(Key_Type => SSN_Type,
"<" => "<",
">" => ">");

86

procedure Change_Address
(SSN : in SSN_Type;
Home : in Address_Type) is

I : Iterator_Type :=
SSN_Keys.Find (Employees, Key => SSN);

begin
if I /= Back (Employees) then

declare
E : Employee_Type renames

To_Access (I).all;
begin

E.Home := Home; -- OK to modify
... -- non-key part

end Op;

87

Multiset

• Like a set, except that multiple elements are
allowed to be equivalent (sorted) or equal
(hashed).

• As for a multimap, there is no conditional
insertion because all insertions succeed.

• Lower_Bound and Upper_Bound can be used
to describe the range of equivalent elements (in
a sorted multiset).

88

procedure Op (S : in out Set_Subtype) is
I, J : Iterator_Type;

begin
Insert (S, New_Item => E);
Insert (S, New_Item => E);
...
I := Lower_Bound (S, E);
J := Upper_Bound (S, E);

while I /= J loop ...;

Delete (S, Item => E);
end;

89

Generic Algorithms

• An iterator pair specifies a “sequence of
items,” abstracting-away the actual container.

• We can write a generic algorithm strictly in
terms of this sequence view to manipulate the
items, thus allowing the algorithm to be used
for any kind of container.

90

generic
type Iterator_Type is private;

with function Succ (Iterator : Iterator_Type)
return Iterator_Type is <>;

...
procedure Generic_Algorithm

(First, Back : in Iterator_Type);

pragma Pure (Generic_Algorithm);

91

Generic Algorithms

• Generic algorithms are implemented in terms
of iterators only; this makes them neutral with
respect to container.

• Generic algorithms are also agnostic with
respect to elements. This allows the user to
choose the most appropriate method to
interrogate an element, given an iterator.

92

generic

type Iterator_Type is private;

with function Succ (Iterator : Iterator_Type)
return Iterator_Type is <>;

with function Pred (Iterator : Iterator_Type)
return Iterator_Type is <>;

with procedure Swap (L, R : Iterator_Type) is <>;

with function "=" (L, R : Iterator_Type)
return Boolean is <>;

procedure Charles.Algorithms.Generic_Reverse_Bidirectional
(First, Back : Iterator_Type);

93

procedure Charles.Algorithms.Generic_Reverse_Bidirectional
(First, Back : Iterator_Type) is

I : Iterator_Type := First;
J : Iterator_Type := Back;

begin

while I /= J loop

J := Pred (J);

exit when I = J;

Swap (I, J); --swap elements designated by I & J

I := Succ (I);

end loop;

end Charles.Algorithms.Generic_Reverse_Bidirectional;

94

procedure Reverse_Container (C : in CT) is

procedure Swap (I, J : Iterator_Type) is
E : Element_Type := Element (I);

begin
Replace_Element (I, By => Element (J));
Replace_Element (J, By => E);

end;

procedure Reverse_Container is
new Generic_Reverse_Bidirectional

(Iterator_Type); --accept defaults
begin

Reverse_Container (First (C), Back (C));
end;

95

procedure Reverse_Vector (V : in VT) is

procedure Swap (I, J : Integer’Base) is
E : Element_Type := Element (V, I);

begin
Replace_Element (V, I, By => Element (J));
Replace_Element (V, J, By => E);

end;

procedure Reverse_Vector is
new Generic_Reverse_Bidirectional

(Iterator_Type => Integer’Base,
Succ => Integer’Succ,
Pred => Integer’Pred);

begin
Reverse_Vector (First (V), Back (V));

end;

96

procedure Reverse_Array (A : in out Array_Type) is

procedure Swap (I, J : Integer’Base) is
E : constant Element_Type := A (I);

begin
A (I) := A (J);
A (J) := E;

end;

procedure Reverse_Array is
new Generic_Reverse_Bidirectional

(Iterator_Type => Integer’Base,
Succ => Integer’Succ,
Pred => Integer’Pred);

begin
Reverse_Array
(First => A’First,
Back => A’First + A’Length);

end;

97

generic

type Iterator_Type is private;

with function Succ (I : Iterator_Type)
return Iterator_Type is <>;

with procedure Process (I : in Iterator_Type) is <>;

with function Is_Less (L, R : Iterator_Type)
return Boolean is <>;

with function "=" (L, R : Iterator_Type)
return Boolean is <>;

procedure Charles.Algorithms.Generic_Set_Union
(Left_First, Left_Back : Iterator_Type;
Right_First, Right_Back : Iterator_Type);

98

procedure Print_Union (S1, S2 : Set_Subtype) is

procedure Process (I : Iterator_Type) is
begin

Put (Element (I)); Put (‘ ‘);
end;

function Is_Less (L, R : Iterator_Type)
return Boolean is

begin
return Element (I) < Element (R);

end;

procedure Union is
new Generic_Set_Union (Iterator_Type);

begin
Union (First (S1), Back (S1), First (S2), Back (S2));
New_Line;

end;

99

procedure Make_List_That_Is_Union_Of_Two_Sets
(S1, S2 : in Set_Subtype;
L : in out List_Subtype) is –-list of set iters

procedure Process (I : Iterator_Type) is
begin

Append (L, New_Item => I); --store iter; means you
end; --don’t have to copy elem

function Is_Less (L, R : Iterator_Type)
return Boolean is

begin
return Element (I) < Element (R);

end;

procedure Union is
new Generic_Set_Union (Iterator_Type);

begin
Clear (L);
Union (First (S1), Back (S1), First (S2), Back (S2));

end;

100

L1, L2 : List_Types.Container_Type;
... --populate L1 and L2
Sort (L1); --instantiation of Generic_Sort
Sort (L2);

Make_Array_That_Is_Union_Of_Two_Sorted_Lists:
declare

A : Array_Type (1 .. Length (L1) + Length (L2));
I : Integer’Base := 1;

procedure Process (Iter : Iterator_Type) is
begin

A (I) := Element (Iter);
I := I + 1;

end;

function Is_Less (L, R : Iterator_Type) return Boolean is
begin

return Element (L) < Element (R);
end;

procedure Union is new Generic_Set_Union (Iterator_Type);
begin

Union (First (L1), Back (L1), First (L2), Back (L2));
... --manipulate sorted array A

end Make_Array_That_Is_Union_Of_Two_Sorted_Lists;

	Tutorial:Charles Container LibraryAda-Europe 2004Palma de Mallorca, Spain
	Library Design
	Flexibility
	Efficiency
	Safety
	Design Philosophy
	Containers
	Time Complexity
	Static Polymorphism
	Sorted Set
	Hashed Set
	Sorted Set or Hashed Set?
	Iterators
	Machine Model
	Iterator Type Properties
	Iterator Representation
	Half-Open Range
	Active vs. Passive Iteration
	Stacks and Queues
	Vectors
	Vector Implementation
	Swap
	Bounded Vector
	Deques (Double-Ended Queue)
	Vector vs. Deque Storage
	Vector vs. Deque Expansion
	Loops vs. Passive Iterators
	Lists
	Sentinel
	Splice, Sort, and Merge
	Variable View of Elements
	Dereferencing an Iterator
	Single Lists
	Double and Single Bounded Lists
	Associative Containers
	Worst Case vs. Average Case
	Strict Weak Ordering
	Sets vs. Maps
	Maps
	Membership Tests
	Conditional Insertion
	Conditional Insertion
	Condition Insertion (cont’d)
	Conditional Insertion (cont’d)
	Replace
	Hashed-Map Resize
	Deletion
	Multimaps
	(Sorted) Equivalent Range
	(Hashed) Equal Range
	Sets
	Generic_Keys
	Multiset
	Generic Algorithms
	Generic Algorithms

